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SUMMARY

Ligand-mediated dimerization has emerged as
a universal mechanism of growth factor receptor
activation. Neurotrophins interact with dimers of
the p75 neurotrophin receptor (p75NTR), but the
mechanism of receptor activation has remained
elusive. Here, we show that p75NTR forms disul-
phide-linked dimers independently of neurotrophin
binding through the highly conserved Cys257 in its
transmembrane domain. Mutation of Cys257 abol-
ished neurotrophin-dependent receptor activity but
did not affect downstream signaling by the p75NTR/
NgR/Lingo-1 complex in response to MAG, indi-
cating the existence of distinct, ligand-specific acti-
vation mechanisms for p75NTR. FRET experiments
revealed a close association of p75NTR intracellular
domains that was transiently disrupted by conforma-
tional changes induced upon NGF binding. Although
mutation of Cys257 did not alter the oligomeric state
of p75NTR, the mutant receptor was no longer able
to propagate conformational changes to the cyto-
plasmic domain upon ligand binding. We propose
that neurotrophins activate p75NTR by a mechanism
involving rearrangement of disulphide-linked
receptor subunits.

INTRODUCTION

The neurotrophins are a family of neurotrophic factors that

control multiple aspects of nervous system development and

function, including neurogenesis, neuronal differentiation, cell
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survival, neurite outgrowth, target innervation, and synaptic

plasticity (Bibel and Barde, 2000). Four neurotrophins are

present in mammals: nerve growth factor (NGF), brain-derived

neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neuro-

trophin-4 (NT-4). The neurotrophins are synthesized as a pre-

pro-peptide from which the mature portion is released by

proteolytic cleavage. The mature forms of neurotrophins

interact with two distinct receptors, a cognate member of the

Trk receptor tyrosine kinase family and the common p75 neuro-

trophin receptor (p75NTR), a member of the tumor necrosis

factor receptor (TNFR) superfamily of death receptors (Friedman

and Greene, 1999; Kaplan and Miller, 2000; Lee et al., 2001a;

Patapoutian and Reichardt, 2001). On the other hand, unpro-

cessed neurotrophins (proneurotrophins) are thought to display

selectivity for p75NTR over Trk receptors (Lee et al., 2001b) with

the aid of the coreceptor sortilin (Nykjaer et al., 2004). While this

interaction is thought to preferentially lead to cell death

(Lee et al., 2001b), cell survival is mediated by Trk signaling

(Patapoutian and Reichardt, 2001). A key issue in neurotrophin

research is the elucidation of the molecular mechanisms under-

lying each of the physiological actions of the neurotrophins in

different cell types, throughout development, and in patholog-

ical situations.

Unlike Trk receptors, p75NTR lacks catalytic activity. The intra-

cellular region of p75NTR contains a flexible juxtamembrane

segment followed by a globular domain known as the death

domain (Liepinsh et al., 1997). Signal transduction by p75NTR is

thought to proceed via ligand-dependent recruitment and

release of cytoplasmic effectors to and from the receptor. Over

20 different intracellular interactors of p75NTR have been identi-

fied to date (Barker, 2004; Bronfman and Fainzilber, 2004;

Dechant and Barde, 2002; Roux and Barker, 2002), but this

wealth of interactions has not translated in a comparable under-

standing of receptor function. Some of the major downstream

signaling events triggered by p75NTR in response to

mailto:carlos.ibanez@ki.se


Neuron

Activation Mechanism of the p75NTR
neurotrophins include activation of NF-kB (Carter et al., 1996),

c-jun kinase (JNK) (Friedman, 2000; Yoon et al., 1998), and cas-

pases (Troy et al., 2002). In addition, p75NTR can also activate the

small GTPase RhoA (Yamashita et al., 1999), but this requires

a different set of ligands derived from myelin, such as myelin-

associated glycoprotein (MAG) and Nogo (Wang et al., 2002;

Wong et al., 2002; Yamashita et al., 2002), and two different cor-

eceptors: a lipid-anchored ligand-binding subunit known as the

Nogo receptor (NgR) (Fournier et al., 2001) and Lingo-1 (Mi et al.,

2004). In addition, p75NTR is also known to undergo proteolytic

cleavage upon activation by several of its ligands or induction

of membrane metalloproteases with phorbol esters (Jung

et al., 2003; Kanning et al., 2003). The release of the p75NTR intra-

cellular domain following intramembrane cleavage by g-secre-

tase is thought to be required for activation of some signaling

pathways, such as NRIF-mediated neuronal death of sympa-

thetic neurons (Kenchappa et al., 2006).

Receptor oligomerization has been recognized as a crucial

step in the activation of many plasma membrane receptors. In

receptors carrying intrinsic kinase activity, ligand-mediated

dimerization stabilizes the active conformation of the kinase

domain by receptor trans-phosphorylation (Schlessinger,

2002). In noncatalytic receptors, such as cytokine and death

receptors, oligomerization of intracellular domains results in

recruitment of adaptors or activation of intracellularly bound

effectors (Ashkenazi and Dixit, 1999; Constantinescu et al.,

1999). However, while necessary, receptor oligomerization

may not always be sufficient for signaling. Several studies have

indicated that some cytokine and growth factor receptors exist

in a preassembled dimeric complex prior to ligand stimulation

and that receptor activation results from a ligand-mediated

change in the relative orientation of the two receptor protomers

(Jiang and Hunter, 1999; Seubert et al., 2003).

Although p75NTR was discovered over 20 years ago, and has

since been intensively studied, its mechanism of activation has

remained mysterious. Numerous studies have reported cross-

linking of radiolabeled neurotrophins to p75NTR dimers and

higher-order oligomers (Hempstead et al., 1991; Mahadeo

et al., 1994; Rydén et al., 1997), demonstrating the ability of

these ligands to directly bind oligomeric forms of this receptor.

Based on this evidence, and the dimeric nature of neurotrophins,

it has been assumed that these ligands activate p75NTR by clas-

sical ligand-mediated dimerization. A recent study has brought

support to this notion by solving the X-ray crystal structure of

a 2:2 complex between NT-3 and p75NTR (Gong et al., 2008).

In the same work, a 2:2 complex between NGF and p75NTR could

also be purified, and it was shown that the glycosylated extracel-

lular domain of p75NTR is monomeric in solution in the absence of

ligand, suggesting a general model of p75NTR dimerization by all

neurotrophins. In the present study, we investigated and charac-

terized endogenous determinants of receptor dimerization. We

discovered that full-length p75NTR forms disulphide-linked

dimers in the absence of neurotrophins through the highly

conserved Cys257 in its transmembrane domain. Functional

analysis of a p75NTR mutant lacking Cys257 revealed the func-

tional importance of disulphide-mediated receptor dimerization

and suggested a previously unknown mechanism of p75NTR

activation by neurotrophins.
RESULTS

Transmembrane Cys257 Mediates Formation
of Disulphide-Linked p75NTR Dimers
Surface expression of p75NTR was assessed in transfected cells

following biotinylation of cell surface proteins, immunoprecipita-

tion, and gel electrophoresis under nonreducing and reducing

conditions. This analysis revealed that wild-type p75NTR forms

disulphide-linked dimers in the plasma membrane of transfected

cells (Figure 1A). At high levels of expression in COS-7 cells,

comparable amounts of cell surface p75NTR monomers and

disulphide-linked dimers could be detected under nonreducing

conditions (Figure 1A). However, the proportion of disulphide-

linked p75NTR dimers in transfected cells depended upon the

level of expression of the receptor. At moderate overexpression

levels, less than 10% of wild-type p75NTR was disulphide linked

(Figure 1B). NGF treatment had no effect on the proportion of

disulphide-linked p75NTR dimers (data not shown). Since neither

the extracellular (Gong et al., 2008; He and Garcia, 2004) nor

intracellular (Liepinsh et al., 1997) domains of p75NTR have

been reported to form disulphide-linked dimers, we turned our

attention to the transmembrane domain of the receptor, which

contains a Cys residue (Cys257) that is absolutely conserved in

all p75NTR orthologs known to date, from echinoderms to

mammals (Bothwell, 2006) (Figure 1C). Mutation of Cys257

to alanine (C257A) abolished the ability of p75NTR to form

disulphide-linked dimers (Figure 1A), indicating that such dimers

are generated by disulphide bonding of two p75NTR molecules

through Cys257 in the transmembrane domain. Disulphide-linked

dimers could also be detected to varying degrees on the surface

of cells endogenously expressing p75NTR, such as PC12 pheo-

chromocytoma, RN22 Schwannoma, and sympathetic neurons

from the rat superior cervical ganglion (SCG) (Figure 1D), as

well as in total extracts of newborn cortex, hippocampus, and

cerebellum (Figure 1E). Interestingly, in the latter cases the

majority of p75NTR was disulphide linked. Of note, a previous

study found high levels of disulphide-linked p75NTR dimers in

one melanoma cell line (A875) but not in another (HS294) (Grob

et al., 1985). Importantly, the C257A mutation did not affect the

ability of p75NTR to bind NGF (Figure 1F), nor its capacity to

undergo g-secretase-dependent intramembrane cleavage

upon stimulation with the phorbol ester PMA (Figure 1G).

Cys257 Is Essential for p75NTR Signaling in Response
to Neurotrophins
The ability of native p75NTR to form disulphide-linked dimers

prompted the question of its possible significance to p75NTR

activation and downstream signaling. We therefore investigated

the effects of the C257A mutation on the ability of the receptor to

recruit intracellular effectors and activate downstream pathways

in response to NGF. Unlike wild-type p75NTR, the C257A mutant

was unable to interact with NRIF, either in the presence or

absence of NGF (Figure 2A). Although a weak interaction could

be observed between the C257A mutant and TRAF6, this was

not increased by NGF treatment, which on the other hand readily

promoted TRAF6 recruitment to wild-type receptors (Figure 2B).

These data suggested that, although wild-type p75NTR is present

as both monomers and disulphide-linked dimers at the cell
Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc. 73
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Figure 1. Transmembrane Cys257 Mediates Formation of Disulphide-Linked p75NTR Dimers

(A) Cell surface expression of disulphide-linked p75NTR dimers (dim) and monomers (mon) in transfected COS-7 cells visualized by neutravidin probing of p75NTR

immunoprecipitates under nonreducing (–DTT) and reducing (+DTT) conditions. In nonreducing conditions, p75NTR dimers run somewhat higher, and monomers

lower, than their predicted molecular weights.

(B) Cell surface expression of disulphide-linked p75NTR dimers (dim) and monomers (mon) in COS-7 cells transfected with different amounts of wild-type p75NTR.

Immunoprecipitates were electrophoresed under nonreducing conditions, and p75NTR was visualized by neutravidin probing of p75NTR immunoprecipitates.

Results are expressed as mean dimer/monomer ratio.

(C) Alignment of p75NTR transmembrane domain sequences from vertebrate and invertebrate species.

(D) Cell surface expression of endogenous disulphide-linked p75NTR dimers (dim) and monomers (mon) in PC12 cells, RN22 Schwannoma cells, and SCG sympa-

thetic neurons visualized by neutravidin probing of p75NTR immunoprecipitates. Control, untransfected COS cells.

(E) Expression of endogenous disulphide-linked p75NTR dimers (dim) and monomers (mon) in extracts of newborn rat cerebellum (cblm), cortex (ctx), and hippo-

campus (hc) visualized by immunoblotting of p75NTR immunoprecipitates under reducing and nonreducing conditions. The control lane represents a mock immu-

noprecipitate of the cblm extract.

(F) Binding of 125I-NGF to wild-type and C257A p75NTR analyzed by chemical crosslinking. Samples were run under reducing conditions. For each construct,

binding counts were normalized to levels of expression as assessed by immunoblotting (IB). Results are expressed as mean ± SD of three independent deter-

minations.

(G) g-secretase-dependent intramembrane cleavage of C257A p75NTR following stimulation with PMA in transfected COS cells. The proteasome inhibitor epox-

omycin was used to prevent degradation of CTF and ICD fragments. Mutant and wild-type (WT) p75NTR molecules were visualized by immunoblotting. The

g-secretase inhibitor DAPT blocked the generation of p75NTR intracellular domain (ICD). CTF, carboxy terminal fragment.
membrane, only the latter appear to be capable of recruiting

downstream effectors such as NRIF and TRAF6 in a ligand-

dependent manner. In order to address this directly, we tested

the ability of NRIF and TRAF6 to differentially interact with mono-

mers and disulphide-linked dimers of wild-type p75NTR by

analyzing pull-down products under reducing and nonreducing

conditions. We found that NRIF interacted exclusively with disul-

phide-linked p75NTR dimers, but not at all with monomers, and

NGF treatment could readily increase this interaction

(Figure 2C). On the other hand, although TRAF6 could pull

down both p75NTR monomers and dimers, NGF treatment only

stimulated TRAF6 binding to p75NTR dimers, but not monomers

(Figure 2D). Also in sympathetic neurons from rat SCG, NRIF

interacted only with p75NTR disulphide-linked dimers, not with
74 Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc.
monomers, and BDNF treatment strongly stimulated NRIF

recruitment to the receptor (Figure 2E).

We also examined three different downstream readouts of

p75NTR activity in transfected fibroblasts and 293 cells, including

activation of NF-kB (Figure 3A), caspase-3 (Figure 3B), and

induction of cell death (Figure 3C) in response to NGF. In all

cases, the C257A mutant was unresponsive to stimulation, indi-

cating that Cys257 is required for neurotrophin-dependent

p75NTR signaling and downstream biological effects.

In order to probe the functional importance of Cys257 for

p75NTR signaling in a more physiological context, we developed

two shRNA constructs directed to 30 UTR sequences of the rat

p75NTR mRNA to knock down endogenous p75NTR expression

in neurons. When introduced together into primary cultures of
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Figure 2. Cys257 Is Essential for Recruitment of NRIF and TRAF6 to p75NTR in Response to NGF

(A) Binding of NRIF to wild-type and mutant p75NTR in transfected HEK293 cells assayed by immunoprecipitation (IP) and immunoblotting (IB).

(B) Binding of TRAF6 to wild-type and mutant p75NTR in transfected HEK293 cells.

(C) Binding of NRIF to wild-type and mutant p75NTR in transfected HEK293 cells. Prior to gel electrophoresis, the pull-down sample was split into two equal parts:

one was boiled in sample buffer, and the other was treated with 1 M DTT prior to boiling. The migration of p75NTR dimers and monomers is indicated.

(D) Binding of TRAF6 to wild-type and mutant p75NTR in transfected HEK293 cells analyzed as in panel (C).

(E) Binding of NRIF to wild-type and mutant p75NTR in rat SCG neurons. NRIF only interacts with p75NTR disulphide-linked dimers, not monomers.
rat SCG neurons, these shRNAs effectively suppressed endog-

enous p75NTR expression, while a control shRNA had no effect

(Figure 4A). As expected, control shRNA did not affect the ability

of BDNF to induce JNK phosphorylation (Figure 4B) and cell

death (Figure 4C) in SCG neurons, which express p75NTR and

TrkA but not TrkB. In contrast, shRNAs directed against

p75NTR abolished both responses, indicating their dependence

on p75NTR signaling (Figures 4B and 4C). Under those condi-

tions, BDNF-mediated JNK phosphorylation and cell death

could be restored by introduction of a wild-type p75NTR expres-

sion construct that is insensitive to our p75NTR shRNAs (Figures

4B and 4C). In contrast to the wild-type construct, the C257A

mutant was unable to restore either JNK phosphorylation or

cell death in response to BDNF in SCG neurons (Figures 4B

and 4C). Together, these results demonstrate that Cys257 is

essential for p75NTR signaling in response to neurotrophins and

support the notion that disulphide-linked p75NTR dimers are

the active, neurotrophin-sensitive receptor species in neurons.
Cys257 Is Not Required for Downstream Signaling by the
p75NTR/NgR/Lingo-1 Complex in Response to MAG
The importance of Cys257 in neurotrophin-dependent p75NTR

signaling prompted the question of its role in the activation of

p75NTR by other types of ligands. We therefore tested the ability

of wild-type and mutant p75NTR to recruit RhoGDI and to

increase RhoA activity in response to the myelin-derived ligand

MAG. These activities require the presence of two additional

receptor subunits, NgR and Lingo-1. Interestingly, cells ex-

pressing p75NTR, NgR, and Lingo-1 responded equally well to

stimulation with MAG in both RhoGDI recruitment to p75NTR

(Figure 5A) and RhoA activity (Figure 5B), regardless of whether

they received wild-type or the C257A mutant. Thus, and in

contrast to activation by neurotrophins, Cys257 is not required

for the ability of p75NTR to signal in response to the non-

neurotrophin ligand MAG, suggesting the existence of mecha-

nistic differences in the activation of p75NTR by different

ligands.
Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc. 75
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Figure 3. Cys257 Is Essential for p75NTR Signaling to NF-kB, Caspase-3, and Cell Death in Response to NGF

(A) NF-kB activity in transfected M23 fibroblasts in the presence and absence of NGF.

(B) Activation of caspase-3 visualized with a cleavage-specific antibody in HEK293 cells transfected with p75NTR constructs in response to NGF. Reprobing

controls for p75NTR and GAPDH are shown.

(C) Cell death assay in HEK293 cells transfected with p75NTR constructs in response to NGF. Results are expressed as mean ± SD of three independent exper-

iments, each performed in duplicate.
Cys257 Allows Disulphide-Linked p75NTR Dimers
to Propagate Conformational Changes to Intracellular
Domains following NGF Binding
How does Cys257 contribute to p75NTR signaling in response to

neurotrophins? Its localization in the transmembrane domain

suggested that it may play a role in the mechanism of receptor

activation, either by regulating p75NTR oligomerization or by

allowing the propagation of conformational changes induced

by neurotrophin binding. Although Cys257 clearly contributes to

the formation of disulphide-linked p75NTR dimers, it remained

unclear whether this was the primary determinant of receptor
76 Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc.
oligomerization. In particular, the ability of the C257A mutant to

bind NGF at normal levels (Figure 1E) suggested that the muta-

tion may not have disrupted the oligomeric state of p75NTR at

the cell surface, as this would have been expected to affect

ligand binding affinity. In order to examine the possible role of

noncovalent interactions in p75NTR oligomerization, we per-

formed chemical crosslinking studies of wild-type and mutant

cell surface receptors in living COS-7 cells. Following chemical

crosslinking of cell surface proteins, p75NTR was immunoprecip-

itated from cell lysates and then subjected to SDS/PAGE under

reducing conditions, so that only oligomeric complexes
Figure 4. Cys257 Is Essential for p75NTR Signaling in SCG Neurons

(A) Downregulation of p75NTR expression in rat SCG neurons following transfection of p75NTR shRNAs.

(B) Assay of JNK phosphorylation in SCG neurons in response to BDNF. SCG neurons were transfected with the indicated shRNA constructs. In rescue exper-

iments, wild-type p75NTR or C257A p75NTR constructs insensitive to p75NTR shRNAs were also introduced by DNA transfection. JNK phosphorylation was

assessed by immunoblotting of total cell lysates.

(C) Cell death in SCG neurons transfected with p75NTR shRNAs in response to BDNF. Rescue experiments with wild-type and C257A p75NTR constructs were

performed as above. *p < 0.05 versus wild-type, n = 3.
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Figure 5. Cys257 Is Not Required for Downstream Signaling by the
p75NTR/NgR/Lingo-1 Complex in Response to MAG

(A) Binding of RhoGDI to wild-type and C257A p75NTR in COS-7 cells cotrans-

fected with NgR and Lingo-1 and stimulated with MAG-Fc.

(B) RhoA activity in COS-7 cells transfected with wild-type and mutant p75NTR

in the presence of NgR and Lingo-1 after stimulation with MAG-Fc for 30 min.

Results are expressed as mean ± SD relative to wild-type without MAG treat-

ment. *p < 0.05 versus control, n = 3.
stabilized by chemical crosslinking would be visualized. As

expected, chemical crosslinking allowed the detection of wild-

type receptor dimers (Figure 6A), demonstrating that p75NTR

indeed forms dimers at the surface of living cells in the absence

of ligand. As chemical crosslinkers have only a limited efficiency,

the actual proportion of receptor dimers and monomers at the

cell surface cannot be determined with this method. NGF binding

did not alter the proportion of p75NTR dimers detected by chem-

ical crosslinking in transfected cells (Figure 6A). Surprisingly,

however, mutation of Cys257 did not affect the proportion of

p75NTR dimers detected after chemical crosslinking, either in

the absence or presence of NGF (Figure 6A). This indicated

that p75NTR may still oligomerize in the absence of Cys257

through noncovalent interactions.

Inspection of the p75NTR transmembrane domain revealed

the presence of a relatively well conserved AxxxG266 motif
(Figure 6B), which is characteristic of self-associating transmem-

brane domains, including those from integrins and glycophorin A

(GpA) (Kubatzky et al., 2001). Interactions between isolated

transmembrane domains can be studied in a biological

membrane using the bacterial ToxCAT system (Russ and Engel-

man, 1999) (see Experimental Procedures for further details).

Dimerization of wild-type and mutant p75NTR transmembrane

domains was assessed along with wild-type GpA transmem-

brane domain, which is known for its strong self-association,

and a GpA point mutant (G83I) that disrupts homodimerization,

as positive and negative controls, respectively. The transmem-

brane domain of p75NTR was found to homodimerize in this

system to about 60% of the level shown by GpA (Figure 6C).

Mutation of Cys257 had only a small effect on transmembrane ho-

modimerization (Figure 6C). In contrast, mutation of Gly266 to Ile

(G266I), which is analogous to the G83I in GpA, abolished self-

association of the p75NTR transmembrane domain (Figure 6C).

When introduced in full-length p75NTR together with C257A,

the G266I mutation diminished the formation of p75NTR dimers

at the plasma membrane (Figure 6D). Together, these data indi-

cate that p75NTR homodimers can be stabilized at the cell

surface by both covalent and noncovalent interactions between

transmembrane domains and that the primary function of Cys257

is not in the formation of receptor dimers.

We then considered the possibility that Cys257 may instead

contribute to p75NTR signaling by mediating the propagation of

conformational changes induced by neurotrophin binding. We

reasoned that conformational changes involving alterations in

the relative positions of p75NTR intracellular domains may be de-

tected by fluorescence resonance energy transfer (FRET). Unlike

methods based on enzyme complementation, in FRET, the

transfer of energy between two chromophores depends both

on the distance between them and their relative orientation,

and it is therefore more suitable to quantitatively assess confor-

mational rearrangements of receptor subunits in a complex. We

chose homo-FRET over other more conventional FRET tech-

niques because of its greater sensitivity and the advantage of

using a single spectral variant to detect interactions between

identical molecules (Squire et al., 2004). Homo-FRET can be de-

tected as a decrease in steady-state fluorescence anisotropy

that results from energy transfer between identical fluorophores.

Monomeric enhanced green fluorescent protein (EGFP1)

displays high anisotropy (i.e., low FRET), while a concatenated

EGFP trimer (EGFP3) shows very low anisotropy (i.e., very high

FRET), and they were used as negative and positive controls,

respectively (Figures 7A, 7B, and 7E). Wild-type and C257A

p75NTR were tagged at the C terminus with monomeric EGFP

(see Experimental Procedures) and transfected in COS-7 cells.

Anisotropy and total fluorescence were measured at different

locations in the plasma membrane of transfected cells. At basal

conditions, wild-type p75NTR-EGFP displayed lower anisotropy

than EGFP1 (i.e., higher FRET) at the plasma membrane (Figures

7C and 7E), in agreement with its oligomeric state in living cells.

Using the anisotropy value of EGFP1 as baseline, the FRET level

of wild-type p75NTR-EGFP could be estimated to be about 25%

that of EGFP3 (Figure 7E), which gives a very strong FRET signal.

Mutant C257A p75NTR-EGFP also showed lower anisotropy than

EGFP1 at the cell surface, albeit not as much as wild-type
Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc. 77
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p75NTR (Figures 7D and 7E), which is in accordance with our

crosslinking studies showing that this mutant retains the ability

to form dimers at the plasma membrane. Interestingly, both

p75NTR-EGFP constructs appeared mainly monomeric at intra-

cellular locations (Figures 7C and 7D), suggesting that oligomer-

ization occurs upon transit to the plasma membrane.

NGF was added to cells expressing wild-type and C257A

p75NTR-EGFP, and changes in anisotropy were evaluated by

time-lapse microscopy. Acute addition of NGF produced an

increase in anisotropy (i.e., decrease in FRET) at the plasma

membrane of cells expressing wild-type p75NTR-EGFP

(Figure 7E). This anisotropy rise was observed in all cells exam-

ined (n = 30), showed a consistent peak 2–3 min after NGF addi-

tion, and lasted for 3–10 min, waning toward the end of the

recording (15 min) (Figures 7F and 7G). In contrast, NGF had

no effect on cell surface anisotropy in cells expressing the

mutant C257A p75NTR-EGFP (n = 22 cells examined) (Figures

7F and 7G). These results indicate that NGF induces a decrease

in FRET in wild-type p75NTR-EGFP at the plasma membrane,

indicating that receptor activation by neurotrophins involves

conformational changes in the relative position or orientation of

p75NTR intracellular domains. The inability of NGF to induce

any change in FRET in cells expressing C257A p75NTR-EGFP

correlates with the loss of neurotrophin-dependent p75NTR

signaling in this mutant and supports a role for Cys257 in the

propagation of conformational changes induced by neurotrophin

binding.

Figure 6. Cell Surface p75NTR Dimerization

Is Mediated by Covalent and Noncovalent

Interactions between Transmembrane

Domains

(A) Wild-type and C257A p75NTR dimers analyzed

by cell surface chemical crosslinking under

reducing conditions. Cell lysates were immuno-

precipitated with anti-p75NTR antibodies; immuno-

blot was probed with anti-HA antibodies.

(B) Alignment of p75NTR transmembrane domains

highlighting the AxxxG self-association motif and

Gly266.

(C) ToxCAT assay of self-association of wild-type

and mutant p75NTR transmembrane domains.

Wild-type and mutant transmembrane domains

from glycophorin A (GpATM) were used as positive

and negative controls, respectively.

(D) Wild-type and mutant p75NTR dimers analyzed

by cell surface chemical crosslinking as above.

DISCUSSION

In this study, we have investigated the

mechanism of activation of the p75 neu-

rotrophin receptor. The first major finding

of this work is the ability of native p75NTR

to form disulphide-linked dimers through

the conserved Cys257 in the transmem-

brane domain. The second is the unex-

pected requirement of this cysteine

residue for the recruitment of intracellular

effectors and downstream signaling by p75NTR in response to

neurotrophins, but not in response to other ligands, such as

MAG. The third is the ability of the p75NTR dimer to undergo

a conformational change in response to NGF and the essential

role of Cys257 in this process. Based on these observations,

we propose a previously unknown mechanism of receptor

activation involving ligand-induced rearrangement of disul-

phide-linked receptor subunits.

While it is relatively straightforward to visualize how receptor

kinases may become activated upon ligand binding (Schles-

singer, 2002), this is less obvious for noncatalytic receptors.

Since these signal by selective interactions with intracellular

effectors, the question that arises is how ligand binding regulates

those interactions. Clearly, something ought to change in the

receptor after ligand binding that makes its intracellular domain

more or less prone to interact with downstream effectors. Ligand

binding may change the oligomerization state of the receptor—

by, for example, inducing dimers—leading to cooperative

binding or release of downstream effectors. Although this has

been the prevalent model for p75NTR activation to date, our

results show that the active p75NTR species pre-exists as a disul-

phide-linked dimer, which is essential for downstream signaling

in response to neurotrophins, obviating a classical ligand-medi-

ated dimerization mechanism. Although an earlier study using

artificially deglycosylated p75NTR extracellular domain had sug-

gested that NGF may activate a preformed receptor dimer by

inducing its dissociation into monomers (He and Garcia, 2004),
78 Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc.
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Figure 7. Analysis of Conformational Changes in p75NTR Intracellular Domains by Anisotropy Microscopy

(A–D) Steady-state anisotropy in transfected cells. Examples of areas used for anisotropy measurements are boxed and shown as high-magnification insets.

Monomeric EGFP (EGFP1, high anisotropy, low FRET) and a concatenated EGFP trimer (EGFP3, low anisotropy, high FRET) were used as controls. The calibra-

tion bar of the look-up table is shown below.

(E) Steady-state anisotropy of wild-type and C257A p75NTR-EGFP in COS-7 cells. The anisotropy value of EGFP1 was arbitrarily set to zero and used as baseline

for the histogram. Bars show average ± SD (n = 8–11 cells for EGFP and 22–30 cells for p75NTR).

(F) Representative examples of anisotropy traces after addition of NGF or medium in cells expressing wild-type or C257A p75NTR-EGFP. A peak in anisotropy was

observed after NGF addition in all cells expressing wild-type p75NTR that were examined (n = 30) regardless of their initial baseline anisotropy level.

(G) Anisotropy change after addition of NGF or medium. The difference in anisotropy before and after addition of NGF (i.e., peak minus baseline value) or medium

was calculated for wild-type and C257A p75NTR-EGFP. Results are expressed as average ± SD (n = 15–17 cells examined). *p < 0.0001 versus C257A.
more recent work has clearly shown that glycosylated p75NTR

extracellular domain is monomeric in the absence of ligand and

that NGF interacts with p75NTR dimers, not monomers (Gong

et al., 2008). Another possible mechanism for receptor activation

is that ligand binding changes the relative orientation of receptor

subunits in a dimeric or multimeric receptor complex. In some

cytokine and growth factor receptors, this is achieved through

the relative rotation of their transmembrane domains within the

plane of the membrane (Moriki et al., 2001; Seubert et al.,

2003). In the case of p75NTR, however, the disulphide link formed

by Cys257 in the transmembrane domain clearly restricts the

possibilities for relative movement of receptor subunits.

Our FRET experiments indicate that the two intracellular

domains of the p75NTR dimer are in close proximity under basal

conditions. This is in agreement with data from a recent study

using a b-gal complementation strategy (Wehrman et al.,

2007). Unlike FRET, however, enzyme complementation gives

an all-or-none response at the single-molecule level and is hence

less suited to reveal subtle conformational changes that do not

alter the oligomeric state of the receptor. In our experiments,

we observed a consistent decrease in FRET upon NGF binding
to wild-type p75NTR. This could either result from a separation

of p75NTR intracellular domains or changes in their relative orien-

tation due to rotation of receptor subunits. Although these two

possibilities are not mutually exclusive, it is difficult to envision

how changes in the relative orientation of intracellular domains

can be brought about by ligand binding to the extracellular region

of a dimeric receptor that is covalently crosslinked at the plasma

membrane. As explained above, a disulphide bridge linking the

transmembrane regions of two receptor subunits would clearly

prevent the propagation of rotational movements from the extra-

cellular to the intracellular domains. Thus, we believe that the

decrease in FRET observed after NGF binding most likely

reflects the separation of p75NTR intracellular domains. Impor-

tantly, and in contrast to the wild-type receptor, we found no

evidence of NGF-mediated conformational changes in the intra-

cellular domain of the C257A p75NTR mutant. Based on these

observations, we propose that neurotrophin binding produces

a scissors-like movement of disulphide-linked p75NTR subunits

with the Cys257-Cys257 disulphide link acting as the fulcrum,

thereby altering the relative proximity of intracellular domains

(Figure 8). In this model, Cys257 would function as the pin in the
Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc. 79
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Figure 8. The ‘‘Snail-Tong’’ Mechanism of p75NTR Activation in Response to Neurotrophins

Hypothetical schematic of p75NTR in the cell membrane before and after neurotrophin binding (based on structures determined by Gong et al. [2008] and Liepinsh

et al. [1997]). The approximate position of Cys257 is indicated. Arrows denote the postulated ‘‘snail-tong’’ movement of p75NTR subunits initiated by ligand binding:

closing onto the neurotrophin dimer in the outside, opening in the inside.
scissors: in its absence, relative movements at one end cannot

be propagated to the other. Unlike normal scissors, however,

our results suggest that as the extracellular domains come closer

together on binding to the neurotrophin dimer, the intracellular

domains separate, not unlike a ‘‘snail-tong’’ mechanism

(Figure 8). This type of movement could be achieved if the

p75NTR protein were to be kinked, as opposed to straight, rela-

tive to the plane of the plasma membrane, in the vicinity of

Cys257. Proline residues are known to introduce kinks that may

vary from 5� to 50� and are common in transmembrane helices

(Yohannan et al., 2004). Thus, the highly conserved Pro254, three

residues upstream of Cys257 (see Figure 1C), seems like a good

candidate for such function. Although not as well conserved, an

unusual Pro triad is also present in the intracellular juxtamem-

brane region of p75NTR, 20 residues away from the plasma

membrane (Pro295-Pro296-Pro297). This portion of p75NTR is not

known to be helical in vivo and has been characterized by

nuclear magnetic resonance as unstructured in solution

(Liepinsh et al., 1997). The conformational changes inferred

from our FRET experiments require a relatively rigid structure

connecting the extra- and intracellular domains and suggest

that the juxtamembrane region of p75NTR may be stabilized

in vivo by interaction with other intracellular components.

The conformational changes observed upon NGF binding

showed a characteristic maximum at 2–3 min after NGF addition
80 Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc.
and lasted for an additional 3–10 min. This kinetics is consistent

with the onset of p75NTR internalization and downstream

signaling, which requires at least 15 min after ligand stimulation

(Bronfman et al., 2003). The separation of intracellular domains

induced by NGF binding may facilitate the recruitment of down-

stream effectors by exposing determinants important for their

interaction with the receptor. This may be particularly important

for receptors with relatively small intracellular domains, such as

p75NTR. Weak homotypic interactions between these domains

may keep the receptor in a closed, inactive state and could

potentially explain the residual amount of dimers observed after

simultaneous mutation of Cys257 and Gly266. Although the

p75NTR death domain was found to be monomeric in solution

up to 2.5 mM (Liepinsh et al., 1997), such interactions might be

detected in crystallization experiments. Even though it is unclear

at present why the conformational change observed is not sus-

tained for longer periods of time, the variation observed in its

duration could reflect interactions with different effector mole-

cules or activation of different downstream signaling events.

That p75NTR activation involves separation of intracellular

domains is consistent with a previous study using chimeric intra-

cellular domains artificially tethered to the plasma membrane

that were induced to dimerize by addition of a dimeric drug

(Wang et al., 2000). In this work, dimerization inhibited the proa-

poptotic effect of the constructs, from which the authors inferred
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that neurotrophin-mediated receptor dimerization should like-

wise silence p75NTR activity, a conclusion that was at odds

with the bulk of studies in the field. Our results indicating that

p75NTR is already dimeric before ligand binding and that

p75NTR activation by NGF involves the separation of intracellular

domains reconcile those results and suggest that this is in fact

the way in which neurotrophins activate this receptor.

Previous work has shown that p75NTR can enhance Trk

responses to neurotrophins, particularly when these are present

at limiting concentrations. For example, sensory and sympathetic

neurons from p75NTR knockout mice show reduced responsive-

ness to NGF (Lee et al., 1994), and a mutant NGF unable to

bind p75NTR displays lower binding affinity and reduced biological

activity in PC12 cells and sensory and sympathetic neurons

(Rydén et al., 1997). This positive modulatory role of p75NTR on

neurotrophin activities mediated by Trk receptors has been attrib-

uted to receptor-receptor interactions and/or ligand concentra-

tion or presentation effects. It is unclear at present whether these

activities require disulphide-linked dimerization of p75NTR. Given

the proposed role for the TrkA and p75NTR transmembrane

domains in their functional interaction (Esposito et al., 2001), it

is possible that formation of high-affinity NGF-binding sites may

be sensitive to conformational changes mediated by Cys257.

The fact that p75NTR signaling in response to MAG does not

require Cys257 suggests that myelin-derived ligands activate

p75NTR by a different mechanism. Although our results indicate

that disulphide-linked dimerization is important for p75NTR acti-

vation by neurotrophins, the stoichiometry of the complex

formed by p75NTR, NgR, and Lingo-1 needs to be further inves-

tigated. The lack of involvement of Cys257 in signaling by MAG

opens an opportunity to specifically disrupt neurotrophin-

specific p75NTR effects in loss-of-function studies. Intriguingly,

we found that the proportion of cell surface disulphide-linked

p75NTR dimers varied in different cell types and with different

levels of receptor expression. As only such dimers are able to

respond to neurotrophins, changes in their proportion or abun-

dance at the cell surface, e.g., between different cell types or

in response to external stimuli or redox states, could determine

the relative degree of p75NTR responsiveness to different ligands.

Cys257 represents a critical element in the activation mecha-

nism of p75NTR by neurotrophins and is absolutely conserved

in all vertebrate and invertebrate p75NTR molecules isolated so

far (Bothwell, 2006). We propose that neurotrophins neither acti-

vate p75NTR by inducing receptor dimers or disassembly into

monomers, as previously suggested, but through a rearrange-

ment of disulphide-linked receptor subunits. Many receptors in

the TNFR superfamily—to which p75NTR belongs—bear intra-

membrane cysteines, including Fas, DR6, RANK, RELT, BCM,

TACI, CD30, CD40, and receptors for TNF, lymphotoxin beta,

and TRAIL. The ‘‘snail-tong’’ mechanism described here could

therefore represent a general way by which receptors bearing in-

tramembrane cysteines are activated.

EXPERIMENTAL PROCEDURES

Plasmids, Antibodies, Proteins, and Chemicals

Rat p75NTR was expressed from the pCDNA3 vector backbone (Invitrogen)

using a full-length coding sequence flanked by an N-terminal hemagglutinin
(HA) epitope tag. Mutations were introduced using QuickChange (Stratagene)

and verified by DNA sequencing. Plasmids to express RIP2, TRAF6, NRIF, sor-

tilin, Lingo-1, and RhoGDI were previously described. EGFP plasmid was from

Clontech. Luciferase reporter plasmid for NF-kB was from Promega. The origin

of antibodies were as follows: MC192 anti-p75NTR from Phil Barker; anti-HA

from Roche; anti-myc, anti-phospho, and -total JNK, cleavage-specific anti-

caspase-3, anti-RhoA, and anti-RhoGDI from Cell Signaling; anti-tubulin

from Sigma. NGF was purchased from Alomone Labs; MAG-Fc from R&D.

NGF was typically applied at 100 ng/ml for 30 min unless otherwise indicated.

MAG-Fc was used at 25 mg/ml for 30 min. PMA was used at 200 nM for 1 hr.

Epoxomycin (1 mM) and DAPT (2 mM) were applied 1.5 hr prior to PMA. All

compounds were from Sigma.

Cell Transfection and Tissue Culture

COS-7 cells were transfected with polyethylenimine (PEI). HEK293 and M23

cells were transfected with Lipofectamine 2000 (GIBCO). M23 is a clonal deriv-

ative of MG87 cells (Eketjäll et al., 1999), originally derived from mouse NIH 3T3

fibroblasts. Cells were typically used on the second day after transfection for

short-term signaling assays, at which point cell death was still low or undetect-

able. We found that different signaling assays worked best in different cell

lines: RhoA and RhoGDI in COS-7, NF-kB in M23 and P-JNK, and caspase-3

in HEK293 cells. This may be related to the specific complement of down-

stream effectors expressed by each cell type. Cell lines were cultured under

standard conditions and primary neurons in serum-free, N2-supplemented

DMEM:F12 medium (GIBCO).

Sympathetic Neuron Culture and p75NTR shRNAs

Sympathetic neurons from P4 rat SCGs were cultured and transfected with

control or p75NTR shRNAs alone or cotransfected with wild-type or mutant

p75NTR as previously described (Kenchappa et al., 2006; Palmada et al.,

2002). The target sequence of the first p75NTR shRNA was ACGGACCTATCT

GAGCTGAAA, the second was ATGGCGTGACTTTCAGGGAAA. Control

shRNA was targeted against EGFP sequences. Three days after transfection,

neurons were treated with 200 ng/ml of BDNF for 1 hr and lysed in NP-40 buffer

(10% glycerol, 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 1 mM

Na3VO4, 1 mM phenylmethylsulfonyl fluoride [PMSF], 2 mg/ml leupeptin

and aprotinin) to assess JNK activation. For cell survival assay, the cells

were fixed in 4% paraformaldehyde 48 hr after BDNF treatment and scored

for apoptosis as previously described (Kenchappa et al., 2006).

Biotinylation, Immunoprecipitation, Immunoblotting,

and Chemical Crosslinking

Cell surface proteins were biotinylated with Sulfo-NHS-LC-Biotin (Pierce).

Cells were lysed in buffer containing 1% Triton X-100, 60 mM octyl-glucosyde,

10 mM iodoacetamide, and protease inhibitors (Roche). For reducing condi-

tions, immunoprecipitates were boiled in sample buffer containing 1 M DTT.

Gels were blotted to PVDF membranes (Amersham). Biotinylated proteins

were detected using Neutravidin conjugated to alkaline phosphatase (Sigma).

Filters were developed by chemifluoresence (Amersham) and scanned on

a STORM840 fluorimager (MolDynamics). Radioiodination of NGF was done

with lactoperoxidase (Sigma), and EDAC/SulfoNHS (Pierce) was used as

chemical crosslinker. Autoradiography was done on a STORM840 phosphor-

imager. Quantifications of immunoblots and autoradiograms were done with

ImageQuant software (MolDynamics).

Assays of NF-kB, RhoA, and Cell Death

NF-kB activity was assayed using a luciferase reporter kit (Promega). NGF was

added 2 days after transfection and left for 24 hr prior to cell lysis. RhoA activity

was evaluated using a kit from Cytoskeleton. Cell death was assessed by the

TUNEL method using kits from Roche and Biocolor. NGF was added 2 days

after transfection and left for another day in serum free-medium prior to assay

of cell death.

ToxCAT Assay of Self-Association of Transmembrane Domains

The reporter system exploits the ability of the ToxR transcription activator of

the Vibrio Cholerae pathogen to bind the cholera toxin (ctx) gene promoter

only when dimerized. A transmembrane segment of interest fused to ToxR is
Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc. 81
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delivered to the bacterial inner membrane by fusion to maltose-binding protein

(MBP). Varying amounts of ToxR dimers will be formed in the cytosol in direct

proportion to the oligomerization ability of the TM domain. Binding of dimer-

ized ToxR to the ctx DNA element triggers expression of a chloramphenicol

transferase (cat) gene reporter and production of CAT protein, which can

then be quantified by a CAT-ELISA kit (Roche Diagnostics) as described by

McClain et al. (McClain et al., 2003). Expression levels of different ToxR-TM-

MBP chimeras were determined by western blotting. The ToxR and ToxCAT

systems have been previously applied to demonstrate self-association of

a range of TM domains from glycophorin A (GpA) (Kubatzky et al., 2001), integ-

rin aIIb (Li et al., 2004), ErbB1 to -4 (Mendrola et al., 2002), and the Epo receptor

(Kubatzky et al., 2001).

Anisotropy Microscopy and FRET

Anisotropy microscopy was done as described by Squire et al. (Squire et al.,

2004) in transiently transfected COS-7 cells. Images were acquired 15–24 hr

posttransfection, using a Olympus IX81 inverted microscope (Olympus,

Germany) equipped with a MT20 illumination system. A linear dichroic polar-

izer (Meadowlark Optics, Frederick, Colorado, US) was placed in the illumina-

tion path of the microscope, and two identical polarizers were placed in an

external filter wheel at orientations parallel and perpendicular to the polariza-

tion of the excitation light. The fluorescence was collected via a 203 0.7 NA

air objective, and parallel and polarized emission images were acquired

sequentially on an Orca CCD camera (Hamamatsu Photonics, Japan). Data

acquisition was controlled by the CellR software supplied by the microscope

manufacturer. NGF (or vehicle) was added 1 min after the start of the time lapse

at a concentration of 100 ng/ml. Anisotropy values were extracted from image

stacks of 30 images acquired in both parallel and perpendicular emission

modes every 30 s for a time period of 15 min after NGF addition. For each

construct, two areas per field of view were measured in four independent

transfections performed in duplicate or triplicate. Fluorescence intensity and

anisotropy images were calculated as described by Squire et al. (Squire

et al., 2004). Wild-type and C257A p75NTR constructs were tagged at the

C terminus with a monomeric version of EGFP (Clontech) carrying the

A207K mutation that disrupts EGFP dimerization. A cytosolic EGFP monomer

(EGFP1) gave a mean anisotropy value of 0.295 ± 0.005 (no FRET), and

a concatenated EGFP trimer (EGFP3) gave a value of 0.2369 ± 0.013 (maximal

FRET), so thresholds for image analysis (done with Image J software) were set

between 0.2 and 0.35 (Figures 7A–7D).
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Framework Program of the European Union (QLG3-CT-1999-00573), and

the National Institutes of Health (NIH 1 R01 MH071624-01A2). R.S.K. and

B.D.C. were supported by the National Institutes of Health (R01 NS038220),

A.R. and G.S. by Cancer Research UK, M.B. by the National Institutes of Health

(NIH 5 R01NS47348), I.M. by the Spanish Ministry of Education (BFU2006-

08542), and A.S by the Marie Curie RTN ‘‘ENDOCYTE’’ from the European

Union FP6 Program.

Accepted: February 25, 2009

Published: April 15, 2009

REFERENCES

Ashkenazi, A., and Dixit, V.M. (1999). Apoptosis control by death and decoy

receptors. Curr. Opin. Cell Biol. 11, 255–260.

Barker, P.A. (2004). p75NTR is positively promiscuous: novel partners and new

insights. Neuron 42, 529–533.

Bibel, M., and Barde, Y.A. (2000). Neurotrophins: key regulators of cell fate and

cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937.
82 Neuron 62, 72–83, April 16, 2009 ª2009 Elsevier Inc.
Bothwell, M. (2006). Evolution of the neurotrophin signaling system in inverte-

brates. Brain Behav. Evol. 68, 124–132.

Bronfman, F.C., and Fainzilber, M. (2004). Multi-tasking by the p75 neurotro-

phin receptor: sortilin things out? EMBO Rep. 5, 867–871.

Bronfman, F.C., Tcherpakov, M., Jovin, T.M., and Fainzilber, M. (2003).

Ligand-induced internalization of the p75 neurotrophin receptor: a slow route

to the signaling endosome. J. Neurosci. 23, 3209–3220.

Carter, B.D., Kaltschmidt, C., Kaltschmidt, B., Offenhäuser, N., Böhm-
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