Featured article

PKC-mediated RhoGDI interaction with p75NTR JUX domain

Theses

New method for topographic transcriptome mapping of the mouse brain

In our latest paper, we demonstrate that spatially resolved RNA-seq is ideally suited for high resolution topographical mapping of genome-wide gene expression in heterogeneous anatomical structures such as the mammalian central nervous system. The work has  appeared online in Genome Biology

Cortical interneurons originating from the medial ganglionic eminence, MGE, are among the most diverse cells within the CNS. Different pools of proliferating progenitor cells are thought to exist in the ventricular zone of the MGE, but whether the underlying subventricular and mantle regions of the MGE are spatially patterned has not yet been addressed. In this work, we combined laser-capture microdissection and multiplex RNA-sequencing to map the transcriptome of MGE cells at a spatial resolution of 50 microns. Distinct groups of progenitor cells showing different stages of interneuron maturation were identified and topographically mapped based on their genome-wide transcriptional pattern. Although proliferating potential decreased rather abruptly outside the ventricular zone, a ventro-lateral gradient of increasing migratory capacity was identified, revealing heterogeneous cell populations within this neurogenic structure. Read the full article HERE.

Two new postdoc fellows join KI group to study roles of growth factor receptors in neuron differentiation, survival and function

Favio Krapacher obtained his PhD at the Universidad Nacional de Córdoba, Argentina, in December 2013. His thesis work focused on studies of p35 transgenic mice as a model of attention deficit hyperactivity disorder, and included a series of behavioral, pharmacological and biochemical studies. Favio joins the KI team to study the role of Alk4 signaling in controlling the differentiation and migration of specific subtypes of forebrain GABAergic interneurons.

Nuria Gresa-Arribas obtained her PhD at the Universiy of Barcelona, Spain, in 2011. Her thesis examined the neurotoxic role of pro-inflammatory microglial cells and the role of C/EBPs transcription factors. She later worked as postdoctoral fellow under the direction of Dr. Josep Dalmau at the same university for studies of autoimmune neurologic diseases associated with antibodies to neuronal cell surface or synaptic proteins. Nuria will join the KI team in November to pursue studies of p75 signaling mutant mice.