Featured articles

Theses

Visitors since February 2012

New discovery explains how ALK7 receptor regulates fat accumulation in obesity

In our latest paper, we report that the sensitivity of fat cells to signals that increase the breakdown of fat is linked to the receptor ALK7. The discovery, which is published in eLife, suggests that ALK7 is an interesting target for future strategies to treat obesity.

The ALK7 receptor is predominantly found in fat cells and tissues involved in controlling the metabolism. Intriguingly, mice with a mutation in ALK7 accumulate less fat than mice with a functional version of the protein. Until now, it has not been known why.

We created mice whose fat cells lack ALK7, but whose other cells all produce ALK7 as normal. We found that fat cells lacking the ALK7 receptor are more sensitive to adrenaline and noradrenaline signals, a finding that can explain why they accumulate less fat even though the mice were on a high-fat diet. Adrenaline and noradrenaline are central players in metabolism. These hormones trigger the burst of energy and increase in heart rate and blood pressure that are needed for the “fight-or-flight” response. The hormones normally stimulate the breakdown of fat, but when nutrients are plentiful, fat cells become resistant to this signal and instead store fat. This mechanism evolved to facilitate energy storage during times of abundant food supply, enhancing survival upon starvation. In the industrialized world where food is constantly accessible, this resistance can cause an unhealthy increase in body fat and result in obesity.

We then investigated if it is possible to prevent obesity by blocking ALK7. At present, there are no known ALK7 inhibitors, but we solved this by generating mice with a special mutation in ALK7 which renders it sensitive to inhibition by a chemical substance. This made it possible for us to block the receptor at any time in an otherwise normal adult animal.

Using this approach, we could get these mice to be leaner on a high fat diet simply by administration of the chemical. This suggests that acute inhibition of the ALK7 receptor can prevent obesity in adult animals, says Tingqing Guo, first author of the study.

We have also showed that the ALK7 receptor works in a similar way in human fat cells as it does in mice.

Overall, these results suggest that blockade of the ALK7 receptor could represent a novel strategy to combat human obesity, says Carlos Ibanez, principal investigator of the study.

The work was supported by grants from the European Research Council, Swedish Research Council, Strategic Research Program in Diabetes of Karolinska Institutet, Swedish Cancer Society, Knut and Alice Wallenberg Foundation, the National University of Singapore and the National Medical Research Council of Singapore. eLife is a peer-reviewed open-access scientific journal established at the end of 2012 by Nobel Prize Winner Randy Schekman, with support from the Howard Hughes Medical Institute, Max Planck Society and Wellcome Trust.

The paper is freely accessible and can be found HERE.

p5rn7vb

New Call: Postdoc Fellows in Neurobiology | Metabolism

Work at Carlos Ibanez laboratory focuses on understanding the functions and signaling mechanisms of  growth factors and their receptors in neural development and injury responses and metabolic regulation, for the development of better therapies to diseases of the nervous system and metabolic disorders.

Carlos Ibanez is Professor of Neuroscience at the Karolinska Institute in Stockholm, Sweden.

Postdoctoral fellows are currently being recruited to the laboratory to advance research on growth factor receptor signaling and function in neurodevelopment and neural injury. We are seeking talented, innovative and enthusiastic researchers with a PhD awarded within the last 5 years. Candidates with expertise in i) molecular and cellular neurobiology, neurodevelopment or ii) molecular and cellular endocrinology, metabolic research and iii) mouse genetics are encouraged to apply.

Applications, including CV, list of publications and statement of future interests should be sent to Prof. Carlos Ibanez (). Applicants should arrange to have at least two confidential letters of reference sent independently by referees to this email address.

Funding is available for an initial period of 2 to 3 years, starting any time during 2014.

Deadline for application is May 10, 2014

New paper reveals differential regulation of pancreatic insulin secretion by Smad proteins and activin ligands

Diabetologia has now published online our latest paper describing differential actions of activins A and B and Smad proteins 2 and 3 on the regulation of insulin secretion by pancreatic beta cells (Wu et al., 2013).

Glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells is regulated by paracrine factors whose identity and mechanisms of action are incompletely understood. Activins are expressed in pancreatic islets and have been implicated in the regulation of GSIS. Activins A and B signal through a common set of intracellular components, but it is unclear whether they display similar or distinct functions in glucose homeostasis. Glucose homeostatic responses were examined in mice lacking activin B and in pancreatic islets derived from these mutants. The ability of activins A and B to regulate downstream signalling, ATP production and GSIS in islets and in beta-cells was compared. Mice lacking activin-B displayed elevated serum insulin levels and glucose-stimulated insulin release. Injection of a soluble activin B antagonist phenocopied these changes in wild type mice. Isolated pancreatic islets from mutant mice showed enhanced GSIS which could be rescued by exogenous activin B. Activin B negatively regulated GSIS and ATP production in wild type islets, while activin-A displayed opposite effects. The downstream mediator Smad3 responded preferentially to activin B in pancreatic islets and beta-cells, while Smad2 showed preference for activin A, indicating distinct signalling effects of the two activins. In line with this, overexpression of Smad3, but not Smad2, decreased GSIS in pancreatic islets. These results reveal a tug-of-war between activin ligands in the regulation of insulin secretion by beta-cells and suggest that manipulation of activin signalling could be a useful strategy for the control of glucose homeostasis in diabetes and metabolic disease.

Read the full article HERE.

Carlos Ibanez Lab wins consecutive Advanced Grant from the European Research Council

The European Research Council (ERC) has announced that Carlos Ibanez is among the winners of the 2013 Advanced Grant competition. At 2.5 million Euros –for a 5 year project– the ERC Advanced Grant has become one of the most prestigious research awards in Europe. In this round, a total of 284 researchers were awarded from over 2,400 applicants, a success rate of 11.8%.

Two new postdoc fellows to join KI group

Lilian Kisiswa obtained a PhD in 2011 in Visual Neursocience at Cardiff University, UK, under the direction of Prof. James E Morgan. Her PhD thesis was entitled “The role of inhibitor of apoptosis (IAPs) in retinal ganglion cell death and dendrite remodelling“. She then did postdoctoral studies at the Department of Molecular Biosciences, School of Biosciences, Cardiff University, under the direction of Prof. Alun M Davies. Her postdoctoral work on reverse signaling by TNF ligands was recently published in Nature Neuroscience. Lilian will join the Stockholm p75 team in August 2013 to investigate the interplay between RIP2 and RhoGDI in the control of axon growth and degeneration by p75NTR and its ligands.

Diana Fernandez Suarez obtained her PhD in 2012 at the Center for Applied Medical Research University of Navarra, Pamplona, Spain, under the direction of Drs.Rafael Franco and Maria Soledad Aymerich. Her PhD thesis was dedicated to anatomical and funcitonal studies of the globus pallidus after manipulation of the endocanabinoid system in animal models of Parkinson’s disease. She performed postdoctoral work at the same laboratory during the past year. Diana will join the KI GDNF team in August 2013 to investigate adult functions of GFRa1 signaling in the healthy and diseased brain.

Open Positions: Postdoc Fellows in Neurobiology | Metabolism

Work at our laboratory focuses on understanding the functions and signaling mechanisms of neuronal growth factors in neural development, injury responses and metabolic regulation, for the development of better therapies to diseases of the nervous system and metabolism.

Postdoctoral fellows are currently being recruited to the laboratory. We are seeking talented, innovative and enthusiastic researchers with a PhD awarded within the last 10 years. Candidates with expertise in neurobiology, metabolism and mouse genetics are encouraged to apply.

Applications, including CV, list of publications and statement of future interests should be sent to Prof. Carlos Ibanez . Applicants should arrange to have at least two confidential letters of reference sent independently by referees to this email address.

Funding is available for an initial period of 2 to 3 years, starting any time during 2013.

Deadline for application is March 31, 2013.

New review explores the structure, evolution and function of the RET receptor tyrosine kinase

Cold Spring Harbour Perspectives in Biology has published Carlos Ibanez’s review on the structure and physiology of the RET receptor tyrosine kinase as part of their collection of reviews on receptor tyrosine kinases. RET, GDNF family ligands, and GFRα coreceptors activate signaling pathways involved in kidney and nervous system development. RET mutations cause Hirschsprung’s disease and at least four cancers. Read the full paper HERE.

 

New paper provides insights into the logic of neurotrophin signaling through the p75 neurotrophin receptor

Cell Reports publishes today our latest paper describing a structure-function map of the death domain of the p75 neurotrophin receptor (Charalampopoulos et al. 2012)

Structural determinants underlying signaling specificity in the tumor necrosis factor receptor superfamily (TNFRSF) are poorly characterized and it is unclear whether different signaling outputs can be genetically dissociated. The p75 neurotrophin receptor (p75NTR), also known as TNFRSF16, is a key regulator of trophic and injury responses in the nervous system. In this paper, we describe a genetic approach to dissect p75NTR signaling and decipher its underlying logic. Structural determinants important for regulation of cell death, NF-kB and RhoA pathways were identified in the p75NTR death domain. Pro-apoptotic and pro-survival pathways mapped onto non-overlapping epitopes, demonstrating that different signaling outputs can be genetically separated in p75NTR. Dissociation of JNK and caspase-3 activities indicated that JNK is necessary but not sufficient for p75NTR-mediated cell death. RIP2 recruitment and RhoGDI release were mechanistically linked, indicating that competition for DD binding underlies cross-talk between NF-kB and RhoA pathways in p75NTR signaling. These results provide new insights into the logic of p75NTR signaling and pave the way for a genetic dissection of p75NTR function and physiology.

Read the full paper HERE.

Carlos Ibanez appointed as Wallenberg Scholar

The Knut and Alice Wallenberg Foundation has today appointed Carlos Ibanez as a Wallenberg Scholar. The award includes a research grant of 15 million Swedish crowns over 5 years. Quote from the Foundation’s website: “The Foundation’s purpose is to support Swedish research and thereby strengthen Sweden as a research nation. Since 2009, we have appointed a total of 46 Wallenberg Scholars. The appointed researchers all belong to the international research forefornt in all areas of science, with an emphasis on medicine and the natural sciences, says Peter Wallenberg Jr., vice chairman of the Knut and Alice Wallenberg Foundation.” Read the text of the announcement (in Swedish) HERE and press release from Karolinska Institute HERE.

New paper reveals critical role of GFRa1 signaling in the development and function of the main olfactory system

The Journal of Neuroscience publishes today our paper on the role of the GDNF receptor GFRa1 in the main olfactory system (Marks et al. 2012). In this work, we investigated the consequences of GFRα1 deficiency for mouse olfactory system development and function.

GDNF and its receptor GFRα1 are prominently expressed in the olfactory epithelium (OE) and olfactory bulb (OB), but their importance for olfactory system development has been unknown. In the OE, we found that GFRα1 was expressed in basal precursors, immature olfactory sensory neurons (OSNs), and olfactory ensheathing cells (OECs), but was excluded from mature OSNs. The OE of newborn Gfra1 knock-out mice was thinner and contained fewer OSNs, but more dividing precursors, suggesting deficient neurogenesis. Immature OSN axon bundles were enlarged and associated OECs increased, indicating impaired migration of OECs and OSN axons. In the OB, GFRα1 was expressed in immature OSN axons and OECs of the nerve layer, as well as mitral and tufted cells, but was excluded from GABAergic interneurons. In newborn knock-outs, the nerve layer was dramatically reduced, exhibiting fewer axons and OECs. Bulbs were smaller and presented fewer and disorganized glomeruli and a significant reduction in mitral cells. Numbers of tyrosine hydroxylase-, calbindin-, and calretinin-expressing interneurons were also reduced in newborn mice lacking Gfra1. At birth, the OE and OB of Gdnf knock-out mice displayed comparable phenotypes. Similar deficits were also found in adult heterozygous Gfra1+/− mutants, which in addition displayed diminished responses in behavioral tests of olfactory function. We conclude that GFRα1 is critical for the development and function of the main olfactory system, contributing to the development and allocation of all major classes of neurons and glial cells.

Read the full paper HERE.